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Abstract. Software engineers need to be able to create, modify, and
analyze knowledge stored in software artifacts. A significant amount
of these artifacts contain natural language, like version control commit
messages, source code comments, or bug reports. Integrated software
development environments (IDEs) are widely used, but they are only
concerned with structured software artifacts – they do not offer support
for analyzing unstructured natural language and relating this knowledge
with the source code. We present an integration of natural language
processing capabilities into the Eclipse framework, a widely used software
IDE. It allows to execute NLP analysis pipelines through the Semantic
Assistants framework, a service-oriented architecture for brokering NLP
services based on GATE. We demonstrate a number of semantic analysis
services helpful in software engineering tasks, and evaluate one task in
detail, the quality analysis of source code comments.

1 Introduction

Software engineering is a knowledge-intensive task. A large amount of that knowl-
edge is embodied in natural language artifacts, like requirements documents,
user’s guides, source code comments, or bug reports. While knowledge workers in
other domains now routinely make use of natural language processing (NLP) and
text mining algorithms, software engineers still have only limited support for deal-
ing with natural language artifacts. Existing software development environments
(IDEs) can only handle syntactic aspects (e.g., formatting comments) and some
basic forms of analysis (e.g., spell-checking). More sophisticated NLP analysis
tasks have been proposed for software engineering, but so far have not been
integrated with common software IDEs and therefore not been widely adopted.

In this paper, we argue that software engineers can benefit from modern
NLP techniques. To be successfully adopted, this NLP must be seamlessly
integrated into the software development process, so that it appears alongside
other software analysis tasks, like static code analysis or performance profiling.
As software engineers are end users, not experts in computational linguistics,
NLP services must be presented at a high level of abstraction, without exposing
the details of language analysis. We show that this kind of NLP can be brought
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to software engineers in a generic fashion through a combination of modern
software engineering and semantic computing approaches, in particular service-
oriented architectures (SOAs), semantic Web services, and ontology-based user
and context models.

We implemented a complete environment for embedding NLP into software
development that includes a plug-in for the Eclipse1 framework, allowing a
software engineer to run any analysis pipeline deployed in GATE [1] through the
Semantic Assistants framework [2]. We describe a number of use cases for NLP
in software development, including named entity recognition and quality analysis
of source code comments. An evaluation with end users shows that these NLP
services can support software engineers during the software development process.

Our work is significant because it demonstrates, for the first time, how a major
software engineering framework can be enhanced with natural language processing
capabilities and how a direct integration of NLP analysis with code analysis
can provide new levels of support for software development. Our contributions
include (1) a ready-to-use, open source plug-in to integrate NLP services into
the Eclipse software development environment (IDE); (2) novel NLP services
suitable for interactive execution in a software engineering scenario; and (3) an
evaluation of a software comment quality assurance service demonstrating the
usefulness of NLP services, evaluated against annotations manually created by a
large group of software engineering students.

2 Software Engineering Background

From a software engineer’s perspective, natural language documentation contains
valuable information of both functional and non-functional requirements, as well
as information related to the application domain. This knowledge often is difficult
or impossible to extract only from source code [3].

One of our application scenarios is the automation of source code comment
quality analysis, which so far has to be performed manually. The motivation for
automating this task arises from the ongoing shift in development methodologies
from a document-driven (e.g., waterfall model) towards agile development (e.g.,
Scrum). This paradigm shift leads to situations where the major documentation,
such as software requirements specifications or design and implementation deci-
sions, are only available in form of source code comments. Therefore, the quality
of this documentation becomes increasingly important for developers attempting
to perform the various software engineering and maintenance tasks [4].

Any well-written computer program should contain a sufficient number of
comments to permit people to understand it. Without documentation, future
developers and maintainers are forced to make dangerous assumptions about
the source code, scrutinizing the implementation, or even interrogating the
original author if possible [5]. Development programmers should prepare these
comments when they are coding and update them as the programs change. There

1Eclipse, http://www.eclipse.org/

http://www.eclipse.org/
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exist different types of guidelines for in-line documentation, often in the form
of programming standards. However, a quality assurance for these comments,
beyond syntactic features, currently has to be performed manually.

3 Design of the NLP/Eclipse Integration

We start the description of our work by discussing the requirements and design
decisions for integrating NLP with the Eclipse platform.

3.1 Requirements

Our main goal is to bring NLP to software engineers, by embedding it into a
current software development environment used for creating, modifying, and
analysing source code artifacts. There are a number of constraints for such an
integration: It must be possible to use NLP on existing systems without requiring
extensive re-installations or -configurations on the end user’s side; it must be
possible to execute NLP services remotely, so that it is not necessary to install
heavy-weight NLP tools on every system; the integration of new services must
be possible for language engineers without requiring extensive system knowledge;
it must be generic, i.e., not tied to a concrete NLP service, so that new services
can be offered by the server and dynamically discovered by the end user; and the
services must be easy to execute from an end user’s perspective, without requiring
knowledge of NLP or semantic technologies. Our solution to these requirements is
a separation of concerns, which directly addresses the skill-sets and requirements
of computational linguists (developing new NLP analysis pipelines), language
engineers (integrating these services), and end users (requesting these services).
The Web service infrastructure for brokering NLP services has been previously
implemented in the open source Semantic Assistants architecture [2] (Fig 1).

Developing new client plug-ins is one of the extension points of the Semantic
Assistants architecture, bringing further semantic support to commonly used
tools. Here, we chose the Eclipse platform, which is a major software development
framework used across a multitude of languages, but the same ideas can be
implemented in other IDEs (like NetBeans).

3.2 An Eclipse Plug-in for NLP

Eclipse is a multi-language software development environment, comprising an IDE
and an extensible plug-in system. Eclipse is not a monolithic program but rather a
small kernel that employs plug-ins in order to provide all of its functionality. The
main requirements for an NLP plug-in are: (1) a GUI integration that allows users
to enquire about available assistants and (2) execute a desired NLP service on a
set of files or even complete projects inside the workspace, without interrupting
the user’s task at hand. (3) On each enquiry request, a list of NLP services
relevant to the user’s context must be dynamically generated and presented to
the user. The user does not need to be concerned about making any changes
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Fig. 1. The Semantic Assistants architecture, brokering NLP pipelines through
Web services to connected clients, including the Eclipse client described here

on the client-side – any new NLP service existing in the project resources must
be automatically discovered through its OWL metadata, maintained by the
architecture. Finally, (4) NLP analysis results must be presented in a form that is
consistent with the workflow and visualization paradigm in a software IDE; e.g.,
mapping detected NL ‘defects’ to the corresponding line of code in the editor,
similar to code warnings displayed in the same view.

3.3 Converting Source Code into an NLP Corpus

A major software engineering artifact is source code. If we aim to support NLP
analysis in the software domain, it must be possible to process source code using
standard NLP tools, e.g., in order to analyze comments, identifiers, strings, and
other NL components. While it is technically possible to load source code into
a standard NLP tool, the unusual distribution of tokens will have a number of
side-effects on standard analysis steps, like part-of-speech tagging or sentence
splitting. Rather than writing custom NLP tools for the software domain, we
propose to convert a source code file into a format amenable for NLP tools.

In the following, we focus on Java due to space restrictions, but the same ideas
apply to other programming languages as well. To convert Java source code into
a standard representation, it is possible to apply a Java fact extraction tool such
as JavaML, Japa, or JavaCC and transform the output into the desired format.
The tool that provides the most information regarding the constructs found in
Javadoc comments [6] is the Javadoc tool. Javadoc’s standard doclet generates
API documentation using the HTML format. While this is convenient for human
consumption, automated NLP analysis applications require a more structured
XML format. When loading HTML documents generated using the standard
doclet into an NLP framework (Fig. 2, left), the elements of an HTML tag are
interpreted as being entities of an annotation. For example, the Java package
(org.argouml.model) is interpreted as being of the type h2. This is because
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Fig. 2. Javadoc generated documentation loaded within an NLP Framework

the Javadoc standard doclet extraction tool marked up the package using the
<h2></h2> tags. As a result, additional processing is required in order to identify
the entity as being a package. In contrast, an XML document (Fig. 2, right),
where the elements of the XML tags coincide with the encapsulated entity, clearly
identifies them as being a Package, Class, etc. For transforming the Javadoc
output into an XML representation, we designed a doclet capable of generating
XML documents. The SSL Javadoc Doclet [7] converts class, instance variable,
and method identifiers and Javadoc comments into an XML representation,
thereby creating a corpus that NLP services can analyse easier.

4 Implementation

The Semantic Assistants Eclipse plug-in has been implemented as a Java Archive
(JAR) file that ships with its own specific implementation and an XML description
file that is used to introduce the plug-in to the Eclipse plug-in loader. The plug-in
is based on the Model-View-Controller pattern providing a flexibility towards
presenting annotations to the user generated from various NLP services. The
user interaction is realized through using the Eclipse Standard Widget Toolkit
and service invocations are implemented as Eclipse Job instances allowing the
asynchronous execution of language services.

On each invocation of an NLP service, the plug-in connects to the Semantic
Assistants server through the Client-Side Abstraction Layer (CSAL) utility
classes. Additional input dialogues are presented to the user to provide NLP
service run-time parameters after interpreting the OWL metadata of the selected
service. Then, the execution will be instantiated as a job, allowing the underlying
operating system to schedule and manage the lifecycle of the job. As the execution
of the job is asynchronous and running in the background (if so configured by the
user), two Eclipse view parts will be automatically opened to provide real-time
logs and the retrieved annotations once NLP analysis is completed.

Eventually, after a successful execution of the selected NLP service, a set of
retrieved results is presented to the user in a dedicated ‘Semantic Assistants’ view
part. The NLP annotations are contained inside dynamically generated tables,
presenting one annotation instance per row providing a one-to-one mapping of
annotation instances to entities inside the software artifacts. The plug-in also
offers additional, Eclipse-specific features. For instance, when executing source
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code related NLP services, special markers are dynamically generated to attach
annotation instances to the corresponding document (provided the invocation
results contain the position of the generated annotations in the code). This offers
a convenient way for users to navigate directly from annotation instances in the
Semantic Assistants view to the line of code in the project where it actually
belongs, in the same fashion as navigating from compiler warnings and errors to
their location in the code.

5 Applications: NLP in Software Development

In this section, we discuss application examples, showing how software engineers
can benefit from integrated NLP services. One of them, the quality analysis of
source code comments, is presented with a detailed evaluation.

5.1 Working with NLP Services in Eclipse

Once the Semantic Assistants plug-in is successfully installed, users can start
using the NLP services directly from the Eclipse environment on the resources
available within the current workspace. One of the features of our plug-in is a
new menu entry in the standard Eclipse toolbar:

This menu entry allows a user to enquire about available NLP services related
to his context. Additionally, users can manually configure the connection to the
Semantic Assistants server, which can run locally or remote. Upon selecting the
‘Available Assistants’ option, the plug-in connects to the Semantic Assistants
server and retrieves the list of available language services generated by the server
through reading the NLP service OWL metadata files. Each language service has
a name and a brief description explaining what it does. The user then selects
individual files or even complete projects as input resources, and finally the
relevant NLP service to be executed. The results of a successful service invocation
are shown to the user in an Eclipse view part called “Semantic Assistants”. In
the mentioned view, a table will be generated dynamically based on the server
response that contains all the parsed annotation instances.

For example, in Fig. 5, the JavadocMiner service has been invoked on a
Java source code file. Some of the annotations returned by the server bear a
lineNumber feature, which attaches an annotation instance to a specific line
in the Java source file. After double-clicking on the annotation instance in the
Semantic Assistants view, the corresponding resource (here, a .java file) will be
opened in an editor and an Eclipse warning marker will appear next to the line
defined by the annotation lineNumber feature.
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5.2 Named Entity Recognition

The developed plug-in allows to execute any NLP pipeline deployed in GATE, not
just software engineering services. For example, standard information extraction

(IE) becomes immediately

Fig. 3. Semantic Assistants Invocation dialogue in
Eclipse, selecting artifacts to send for analysis

available to software devel-
opers. Fig. 4 shows a sam-
ple result set of an AN-
NIE invocation, a named
entity recognition service
running on the licensing
documentation of a Java
class. ANNIE can extract
various named entities such
as Person, Organization,
or Location. Here, each row
in the table represents a
named entity and its corre-
sponding resource file and
bears the exact offset of
the entity inside the tex-
tual data so it can be eas-
ily located. NE recognition
can allow a software engi-
neer to quickly locate im-

portant concepts in a software artifact, like the names of developers, which is
important for a number of tasks, including traceability link analysis.

5.3 Quality Analysis of Source Code Comments

The goal of our JavadocMiner tool [4] is to enable users to automatically assess the
quality of source code comments. The JavadocMiner is also capable of providing
users with recommendations on how a Javadoc comment may be improved based

Fig. 4. Retrieved NLP Annotations from the ANNIE IE Service
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on the “How to Write Doc Comments for the Javadoc Tool” guidelines.2 Directly
integrating this tool with the Eclipse framework now allows software engineers
to view defects in natural language in the same way as defects in their code.

In-line Documentation and Javadoc. Creating and maintaining documen-
tation has been widely considered as an unfavourable and labour-intensive task
within software projects [8]. Documentation generators currently developed are
designed to lessen the efforts needed by developers when documenting software,
and have therefore become widely accepted and used. The Javadoc tool [6] pro-
vides an inter-weaved representation where documentation is directly inserted
into Java source code in the form of comments that are ignored by compilers.

Different types of comments are used to document the different types of
identifiers. For example, a class comment should provide insight on the high-level
knowledge of a program, e.g., which services are provided by the class, and which
other classes make use of these services [9]. A method comment, on the other
hand, should provide a low-level understanding of its implementation.

When writing comments for the Javadoc tool, there are a number of guideline
specifications that should be followed to ensure high quality comments. The
specifications include details such as: (1) Use third person, declarative, rather
than second person, prescriptive; (2) Do not include any abbreviations when
writing comments; (3) Method descriptions need to begin with verb phrases; and
(4) Class/interface/field descriptions can omit the subject and simply state the
object. These guidelines are well suited for automation through NLP analysis.

Automated Comment Quality Analysis. Integrating the JavadocMiner with
our Eclipse plug-in provides for a completely new style of software development,
where analysis of natural language is interweaved with analysis of code.

Fig. 5, shows an example of an ArgoUML3 method doesAccept loaded
within the Eclipse IDE. After analyzing the comments using the JavadocMiner,
the developer is made aware of some issues regarding the comment: (1) The
PARAMSYNC metric detected an inconsistency between the Javadoc @param
annotation and the method parameter list: The developer should modify the
annotation to begin with the name of the parameter being documented, “ob-
jectToAccept” instead of “object” as indicated in PARAMSYNC Explanation.
(2) The readability metrics [4] detected the Javadoc comment as being below
the Flesch threshold FLESCHMetric and FleschExplanation, and above the Fog
threshold FOGMetric and FOGExplanation, which indicates a comment that
exceeds the readability thresholds set by the user. (3) Because the comment does
not use a third person writing style as stated in guideline (1), the JavadocMiner
generates a recommendation MethodCommentStyle that explains the steps needed
in order for the comment to adhere to the Javadoc guidelines.

2http://oracle.com/technetwork/java/javase/documentation/index-137868.html
3ArgoUML, http://argouml.tigris.org/

http://oracle.com/technetwork/java/javase/documentation/index-137868.html
http://argouml.tigris.org/


9

Fig. 5. NLP analysis results on a ArgoUML method within Eclipse

End-User Evaluation. We performed an end-user study to compare how well
automated NLP quality analysis in a software framework can match human judge-
ment, by comparing the parts of the in-line documentation that were evaluated
by humans with the results of the Javadoc-Miner. For our case study, we asked 14
students from an undergraduate level computer science class (COMP 354), and
27 students from a graduate level software engineering course (SOEN 6431) to
evaluate the quality of Javadoc comments taken from the ArgoUML open source
project [10]. For our survey, we selected a total of 110 Javadoc comments:

15 class and interface com-

Fig. 6. A Sample Question from the Survey

ments, 8 field comments, and
87 constructor and method
comments. Before participat-
ing in the survey, the stu-
dents were asked to review
the Javadoc guidelines dis-
cussed earlier. The students
had to log into the free on-
line survey tool Kwik Sur-
veys4 using their student IDs,
ensuring that all students
completed the survey only
once. The survey included a

set of general questions such as the level of general (Table 1, left) and Java
(Table 1, right) programming experience.

The students were able to rate the comments as either Very Poor, Poor, Good,
or Very Good as shown in Fig. 6, giving the comments a 50% chance of being
positively or negatively classified. This also enabled us to know how strongly the
participants felt about their sentiments, compared to using just a Good or Bad

4Kwik Surveys, http://www.kwiksurveys.com/

http://www.kwiksurveys.com/
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Table 1. Years of general and Java programming experience of study participants

General Experience Java Experience
Class 0 Years 1-2 Years 3+ Years 0 Years 1-2 Years 3+ Years
COMP 354 11% 31% 58% 7% 61% 32%
SOEN 6431 02% 22% 76% 10% 49% 41%

selection. From the 110 manually assessed comments, we selected a total of 67
comments: 5 class and interface comments, 2 field comments, and 60 constructor
and method comments, that had strong agreement (≥ 60%) as being of either
good (39 comments) or bad (28 comments) quality.

When comparing the student evaluation of method comments with some of
the NL measures of the JavadocMiner (Table 2), we found that the comments
that were evaluated negatively contained half as many words (14) compared to
the comments that were evaluated as being good. Regardless of the insufficient
documentation of the bad comments, the readability index of Flesch, Fog and
Kincaid indicated text that contained a higher density, or more complex material,
which the students found hard to understand. All of the methods in the survey
contained parameter

Fig. 7. A Sample Answer from the Survey

lists that needed to
be documented us-
ing the @param an-
notation. When ana-
lysing the results of
the survey, we found
that most students
failed to analyze the
consistency between
the code and com-
ments as shown in Fig. 7. Our JavadocMiner also detected a total of 8 abbrevia-
tions being used within comments, that none of the students mentioned.

Finally, for twelve of the 39 comments that were analyzed by the students
as being good, 12 of them were not written in third-person according to the
guidelines, a detail that all students also failed to mention.

6 Related Work

We are not aware of similar efforts for bringing NLP into the realm of software
development by integrating it tightly with a software IDE.

Some previous works exist on NLP for software artifacts. Most of this re-
search has focused on analysing texts at the specification level, e.g., in order to
automatically convert use case descriptions into a formal representation [11] or
detect inconsistent requirements [12]. In contrast, we aim to support the roles of
software developer, maintainer, and quality assurance engineer.
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Table 2. Method Comments Evaluated by Students and the JavadocMiner

Student Evaluation Avg. Number of Words Avg. Flesch Avg. Fog Avg. Kincaid
Good 28.03 39.2 12.63 10.55
Bad 14.79 5.58 13.98 12.66

There has been effort in the past that focused on analyzing source code
comments; For example, in [13] human annotators were used to rate excerpts
from Jasper Reports, Hibernate and jFreeChart as being either More Readable,
Neutral or Less Readable, as determined by a “Readability Model”. The authors
of [14] manually studied approximately 1000 comments from the latest versions
of Linux, FreeBSD and OpenSolaris. The work attempts to answer questions
such as 1) what is written in comments; 2) whom are the comments written for
or written by; 3) where the comments are located; and 4) when the comments
were written. The authors made no attempt to automate the process.

Automatically analyzing comments written in natural language to detect code-
comment inconsistencies was the focus of [15]. The authors explain that such
inconsistencies may be viewed as an indication of either bugs or bad comments.
The author’s implement a tool called iComment that was applied on 4 large
Open Source Software projects: Linux, Mozilla, Wine and Apache, and detected
60 comment-code inconsistencies, 33 new bugs and 27 bad comments.

None of the works mentioned in this section attempted to generalize the
integration of NLP analysis into the software development process, which is a
major focus of our work.

7 Conclusions and Future Work

We presented a novel integration of NLP into software engineering, through a
plug-in for the Eclipse platform that allows to execute any existing GATE NLP
pipeline (like the ANNIE information extraction system) through a Web service.
The Eclipse plug-in, as well as the Semantic Assistants architecture, is distributed
as open source software.5 Additionally, we presented an example NLP service,
automatic quality assessment of source code comments.

We see the importance of this work in two areas: First, we opened up the
domain of NLP to software engineers. While some existing work addressed
analysis services before, they have not been adopted in software engineering, as
they were not integrated with common software development tools and processes.
And second, we demonstrate the importance of investigating interactive NLP,
which so far has received less attention than the typical offline corpus studies.
Our case study makes a strong case against a human’s ability to manage the
various aspects of documentation quality without (semi-)automated help of NLP
tools such as the JavadocMiner. By embedding NLP within the Eclipse IDE,

5See http://www.semanticsoftware.info/semantic-assistants-eclipse-plugin

http://www.semanticsoftware.info/semantic-assistants-eclipse-plugin
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developers need to spend less efforts when analyzing their code, which we believe
will lead to a wider adoption of NLP in software engineering.
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