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Abstract. A large amount of biological knowledge today is only avail-
able from full-text research papers. Since neither manual database cura-
tors nor users can keep up with the rapidly expanding volume of scientific
literature, natural language processing approaches are becoming increas-
ingly important for bioinformatic projects.
In this paper, we go beyond simply extracting information from full-
text articles by describing an architecture that supports targeted access
to information from biological databases using the results derived from
text mining of research papers, thereby integrating information from
both sources within a biological application.
The described architecture is currently being used to extract information
about protein mutations from full-text research papers. Text mining re-
sults drive the retrieval of sequence information from protein databases
and the employment of algorithmic sequence analysis tools, which fa-
cilitate further data access from protein structure databases. Complex
mapping of NLP derived text annotations to protein structures allows the
rendering, with 3D structure visualization, of information not available
in databases of mutation annotations.

1 Introduction

Biological researchers today have access to vast amounts of research data. Un-
like in many other disciplines, these results are not only published in research
papers, but additionally in a structured form within several publicly accessible
databases. This data describes a unique array of information on biological enti-
ties such as DNA, proteins, and small molecules. A large proportion of salient
information is however still hidden within individual research papers. Moreover,
the rate at which new findings are being published is much higher than individ-
ual scientists or engineers can cope with, which is hindering further research and
the development of industrial applications. For this reason, NLP techniques are
progressively being applied in the area of biology.
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Fig. 1. System architecture for the integration of NLP with biological databases

Existing work in the area of biological text mining systems so far has focused
on delivering extraction-based systems for biological research and database cura-
tion projects. Examples for such systems are: (1) The BioRAT system [3], which
combines an information retrieval engine with an information extraction com-
ponent based on user-definable templates (regular-expression based grammars).
Users can then view extracted text segments instead of reading the full-text pa-
pers. (2) ProFAL (PROtein Functional Annotation through Literature) [4] is a
system that annotates entries in biological databases with information found in
the scientific literature, supporting manual database curation by proposing infor-
mation from texts as supplementary data for biological entities. (3) Textpresso,
an “ontology-based information retrieval and extraction system for Biological
Literature” [9], which also aims at supporting biological database curation tasks.

While we also aim at supporting biologists through text mining, our work
differs in that we want to provide a foundation for new biological applications
by directly linking information obtained through NLP with the available bio-
logical databases. In other applications, like BioRAT or Textpresso, the textual
results are meant for human consumption, so the often low precision of text
mining systems is less critical. In our case, however, there is no human step
between the NLP system and further application-specific processing. To ensure
a reliable cross-linking is possible, NLP-derived results must be more rigorously
structured, filtered, and analyzed before being used for bioinformatics applica-
tions. We demonstrate the feasibility of this idea with a biologically relevant
application for the visualization of protein 3D structures.

2 Connecting Biological Databases and Text Mining

In this section we present an architecture for combining text mining results with
biological databases and in-silico algorithms. It follows a standard multi-tier
information system design, similarly to the application discussed in [13]. Figure
2 shows the main components, which we now discuss in detail.

Tier 1: Clients. The first tier provides access to the system, typically used by
humans, but potentially also for other automated clients. Most services and data
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will be delivered through a web browser, while some programs could require
additional “fat clients” or Java applets, like a 3D-visualization component.

Tier 2: Presentation and Interaction. Tier 2 is responsible for information presen-
tation and user interaction. In our architecture, it has to deal with both service
access and content visualization. A connector for an information retrieval en-
gine allows the dispatch of user queries to an IR system to obtain documents.
Retrieved documents can then be queued for processing by an NLP system. Fi-
nally, it allows for the control of specialized in-silico applications, the interaction
between the user agent, the processed NLP results, and the bioinformatics algo-
rithms.

Tier 3: Retrieval and Analysis. Tier 3 provides all the document analysis and
retrieval functions discussed above. In order to access biological documents,
the architecture can be equipped with a stand-alone information retrieval en-
gine like Lucene or a web-spidering component. The natural language analysis
part is based on the GATE (General Architecture for Text Engineering) frame-
work [5], one of the most widely used NLP tools. Since it has been designed
as a component-based architecture, individual analysis components can be eas-
ily added, modified, or removed from the system. Finally, application-specific
algorithms are needed to process the NLP-derived results, filtering and supple-
menting them with data from biological databases. These algorithms, in turn,
can reference standard bioinformatics tools like BLAST [1] or CLUSTAL W [12].

Tier 4: Resources. Input documents (research papers) either come directly from
the Web (or some other networked source, like emails), or a full-text database.
Results from the NLP component are stored as annotations to the original doc-
uments in their own database. They can be queried for specific keywords (for
example, finding all references to a particular protein), or exported to XML for
exchange with other applications. Finally, in order to verify, process, and supple-
ment the text mining results the architecture needs access to various biological
databases, for example the PDB, Brenda, or Entrez.

3 Case Study: The MutationMiner System

In this section we present the MutationMiner system we have developed within
the architecture described above. It combines text mining results from protein
engineering literature with biological databases to support enhanced 3D struc-
ture visualizations of proteins [2]. We give preliminary results and outline areas
for further improvement, which are discussed in more detail in section 4.

3.1 Biological Background

The motivation for this work is the ever-increasing amount of scientific literature
detailing the effects of mutations to proteins. A bio-engineer working on the im-
provement of an enzyme, for example for its use within an industrial process,
needs an understanding of the impact of all mutations carried out on the partic-
ular protein family. This requires a complex mapping of sequence mutants to a
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common protein structure. Currently the protein mutation database (PMD) [7]
and associated visualization tools can provide this capability. The content of this
database is limited however by the speed at which newly published papers can
be processed. In 1999 the PMD authors reported a three-year backlog of unpro-
cessed publications. Since the arrival of high-throughput sequence modification
techniques, such as directed evolution, a greater number of mutant sequences
are produced along with information about their improved performance under
precisely defined conditions.

Our goal, therefore, is to develop text mining tools that automatically scan
literature and extract information about protein mutations. The extracted in-
formation can then be used to access protein sequence information from bi-
ological databases for use by a sequence alignment algorithm, which in turn
queries protein structure information needed for 3D visualization. A protein engi-
neer can then view structural representations of proteins (obtained from protein
databases) combined with annotations describing mutations and their impacts
(extracted through text mining from publications).

Protein Mutations in the Literature. Enzymes are proteins that catalyze specific
biochemical reactions. Each enzyme family carries out conversions of distinct
chemical substrates to chemical products. Within an enzyme family each individ-
ual enzyme has different physiochemical operating parameters, like temperature
optimum, pH optimum, or thermal stability. Mutation of protein sequences has
in many cases resulted in the production of enzymes with altered properties and
is a common approach to enzyme improvement. Such mutations are typically
the change of amino acids of the protein sequence achieved using molecular bi-
ology techniques such as site directed mutagenesis or directed evolution. The
properties of the amino acids at specific positions on the protein sequence are
the determining factor, however which amino acids and which positions are re-
sponsible for particular enzyme properties is not always known. For this reason,
protein engineers routinely mutate residues and document their impacts on en-
zyme characteristics of special interest in scientific publications.

Structure Visualization. The complex structure of a protein is intrinsically re-
lated to its function and the elucidation and manipulation of protein structures
to enhance protein function has valuable practical benefits. Protein structure vi-
sualization tools allow the protein engineer to view and rotate three-dimensional
images in various representations. This in turn allows for the interpretation of
experimental or computational results in a spatial context and facilitates the
generation of hypotheses concerning the mechanistic interactions of the protein
with substrate ligands. For these reasons, it is important to be able to link text
mining results in an automated fashion to such 3D visualizations.

3.2 System Architecture and Implementation
The system, as outlined above, needs to integrate document retrieval, NLP-based
text analysis, protein sequence database access, protein sequence analysis, and
output format generation within a single architecture. Figure 2 shows the en-
hanced architecture based on the design presented in section 2.
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Users interact with the system using a standard web client (tier 1). A web
server (tier 2) receives a query (e.g., for a protein family) and dispatches it to an
IR subsystem (tier 3), which retrieves relevant texts from the Web (e.g., NCBI’s
PubMed) or a local database (tier 4). Retrieved abstracts or full-length papers (if
available) are then run through the NLP subsystem (tier 3) to identify mutations
and extract relevant information. This information is then used by another tier
3 component to search Entrez in order to identify protein accessions and retrieve
protein sequences from a biological sequence database. Mutated residues located
on eligible sequences are then combined with the information extracted from the
documents and converted into tool-specific output formats (tier 2). The user can
then access the combined information through a protein visualization tool like
ProSAT. In the remainder of this section, we discuss the individual components
in more detail and show preliminary results.

Text Mining Subsystem. The NLP step needs to identify the proteins being
mutated so that the corresponding amino acid sequence can be retrieved from a
database. To do this the retrieved documents are run through an NLP subsystem
that extracts proteins, host organisms, mutations, their interrelations, as well as
provided accession numbers. A full text or abstract, once retrieved and converted
into a suitable input format, is run through a so-called processing pipeline of
GATE components, which we describe in more detail below.

Preprocessing and Gazetteering. After dividing the input stream into individual
tokens in the tokenization step, a lookup phase identifies words and expressions
based on a number of precompiled lists, like person names, companies, measure-
ments, and biomedical-related lists, like chemicals, drugs, genetic structures, or
protein names. Based on these lists, a Gazetteer component annotates words with
a major and minor type, which forms a two-level hierarchy, similar to a (very
simple) ontology. For non-biomedical information, we rely on lists contained in
the ANNIE information extraction system that comes with GATE. Biomedical
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lists use the same resources as the BioRAT system described in [3]: lists of entries
extracted from the MeSH hierarchy and SwissProt, together holding more than
five million words in roughly 650,000 entries.

Sentence Splitting and POS Tagging. The next two components split the input
text into individual sentences and then, for each sentence, annotate each word
with its part-of-speech (POS) tag using the Hepple tagger.

Named Entity Recognition. In the next stage, several finite-state transducers
combine individual tokens into more complex named entities (NEs), based on
regular-expression grammars and specialized tokenizers, which are run over the
annotations generated by the previous steps. Examples for entities we detect are
persons (containing a first name, last name, and possibly initials), protein expres-
sions, or database accession identifiers. At this stage we also identify mutation
expressions, which can occur in many different formats.

Noun Phrase Chunking. Another JAPE (finite-state transducer) grammar analy-
ses the text and builds up more complex grammatical structures, so-called noun
phrases, which include determiners, modifiers, and head nouns. For example, the
words “The specific enzyme activity” will be identified as a single noun phrase
(NP) with its words marked up as “The/DET specific/MOD enzyme/MOD activ-
ity/HEAD.” An important feature of our NP chunker is its ability to incorporate
the named entities detected above in addition to using POS tags. This allows us
to alleviate some of the problems that result from using standard POS taggers,
which are statistically trained on more general domains like newspaper articles,
for biomedical documents. Finally, we mark all those noun phrase structures
that contain a biological named entity.

Relation Detection. The last step is the correct identification and interpretation
of relations between entities. For our task, we need to be able to identify two
kinds of relations: between proteins and mutations, that is, which protein has
been mutated within the described experiment; and between proteins and tax-
onomic origin, which we need to correctly retrieve amino acid sequences from
protein sequence databases. For the protein-mutation identification, we currently
extract all sentences that contain mutation expressions as identified by the corre-
sponding NE grammar. We then scan these sentences for the protein expression,
making the simple assumption that the protein mentioned together with the
mutations must be the one that has been mutated. For example, in the sentence:

“Wild-type and mutated xylanase II proteins (termed E210D and E210S) were
expressed in S. cerevisiae grown in liquid culture.” we identify two mutations,
E210D and E210S, and one protein expression, “xylanase II proteins,” which we
then assume is the protein being mutated. As this approach is quite simplistic,
it might fail in a number of cases, especially when more than one protein mu-
tation is described within a single paper. However, since we only extract those
mutations where we can identify a corresponding host organism, this approach
has been shown to work reliably within our case study on selected xylanase pa-
pers. For extracting the second (protein-host) relation we use a template-based
approach that matches certain NP-NP patterns where one noun phrase contains
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1: P36217. Reports Endo-1,4-beta-xyl...[gi:549461] BLink, Domains, Links

>gi|549461|sp|P36217|XYN2_TRIRE Endo-1,4-beta-xylanase 2 precursor

MVSFTSLLAASPPSRASCRPAAEVESVAVEKRQTIQPGTGYNNGYFYSYWNDGHGGVTYTNGPGG

QFSVNWSNSGNFVGGKGWQPGTKNKVINFSGSYNPNGNSYLSVYGWSRNPLIEYYIVENFGTYNP

Fig. 3. Protein sequence data in FASTA format for xylanase 2 retrieved from
Entrez using protein names and organisms obtained by NLP analysis

CLUSTAL W (1.82) multiple sequence alignment

10. 20. 30. 40. 50.
1 YRP-TGTYK-GTVKSDGGTYDIYTTTRYNAPSIDGD-RTTFTQYWSVRQS gi|139865|sp|P09850|XYNA_BACCI
1 YRP-TGTYK-GTVKSDGGTYDIYTTTRYNAPSIDGD-RTTFTQYWSVRQS gi|640242|pdb|1BCX|Xylanase
1 YRP-TGTYK-GTVTSDGGTYDVYQTTRVNAPSVEG--TKTFNQYWSVRQS gi|17942986|pdb|1HIX|BChain
1 YRP-TGAYK-GSFYADGGTYDIYETTRVNQPSIIG--IATFKQYWSVRQT gi|1351447|sp|P00694|XYNA_BACP
1 YNPSTGATKLGEVTSDGSVYDIYRTQRVNQPSIIG--TATFYQYWSVRRN gi|549461|sp|P36217|XYN2TRIRE
1 YNPCSSATSLGTVYSDGSTYQVCTDTRTNEPSITG--TSTFTQYFSVRES gi|465492|sp|P33557|XYN3_ASPKA
1 RGVPLDCVGFQSHLIVG---QVPGDFRQNLQRFADLGVDVRITELDIRMR gi|121856|sp|P07986|GUX_CELFI
1 RGVPIDCVGFQSHFNSGS--PYNSNFRTTLQNFAALGVDVAITELDIQG- gi|6226911|sp|P26514|XYNA_STRL
1 RGVPIDGVGFQCHFINGMSPEYLASIDQNIKRYAEIGVIVSFTEIDIRIP gi|139886|sp|P10478|XYNZ_CLOTM

Fig. 4. Alignment of xylanase sequences obtained from the Entrez database

the protein expression identified as the one being mutated (e.g., xylanase II ),
with NPs containing an expression marked as an organism (e.g., algae or fungi).

Biological Database Integration and Protein Sequence Analysis. As
outlined above, information retrieved from documents is used to access various
biological databases for the retrieval of protein sequence and structure data,
which in turn is used for further processing steps. The end product of our appli-
cation is a combined data set for protein 3D-structure visualization containing
information from both scientific publications and databases. In the following
paragraphs, we discuss how data obtained in the text mining step can be pro-
cessed by in-silico bioinformatics tools and linked to databases.

Protein Sequence Database Access. The second step in the process is the retrieval
of protein sequences from a sequence database for each protein/organism com-
bination detected in the text mining subsystem. For this, we access the Entrez
databases in order to identify protein accessions and retrieve protein sequences
in FASTA format [10]. Entrez is the integrated, text-based search and retrieval
system used at National Centre for Biotechnology Information (NCBI) for the
major databases, including PubMed Scientific Literature, Nucleotide and Pro-
tein Sequences, Protein Structures, Complete Genomes, and Taxonomy.3 The
key needed for a successful retrieval is a correct protein/organism pair. Figure
3 shows an example of a retrieved xylanase sequence in FASTA format (for
programmatic purposes the sequence is obtained in XML format).

Sequence Analysis. The sequence analysis component takes the sequences ob-
tained in the previous step and processes them for similarity. Outlying and du-
3 The complete list of Entrez databases can be viewed at http://www.ncbi.nlm.nih.
gov/Database/index.html

http://www.ncbi.nlm.nih.gov/Database/index.html
http://www.ncbi.nlm.nih.gov/Database/index.html
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Title Crystallographic Analyses Of Family 11 Endo–1,4-Xylanase Xyl1
Classification Hydrolase
Compound Mol Id: 1; Molecule: Endo-1,4–Xylanase; Chain: A, B; Ec: 3.2.1.8;
Exp. Method X-ray Diffraction

JRNL TITL 2 ENDO-[BETA]-1,4-XYLANASE XYL1 FROM STREPTOMYCES SP. S38
JRNL REF ACTA CRYSTALLOGR.,SECT.D V. 57 1813 2001
JRNL REFN ASTM ABCRE6 DK ISSN 0907-4449
...
DBREF 1HIX A 1 190 TREMBL Q59962 Q59962 39 228
DBREF 1HIX B 1 190 TREMBL Q59962 Q59962 39 228
...
ATOM 1 N ILE A 4 48.459 19.245 17.075 1.00 24.52 N
ATOM 2 CA ILE A 4 47.132 19.306 17.680 1.00 50.98 C
ATOM 3 C ILE A 4 47.116 18.686 19.079 1.00 49.94 C
ATOM 4 O ILE A 4 48.009 17.936 19.465 1.00 70.83 O
ATOM 5 CB ILE A 4 46.042 18.612 16.837 1.00 50.51 C
ATOM 6 CG1 ILE A 4 46.419 17.217 16.338 1.00 51.09 C
ATOM 7 CG2 ILE A 4 45.613 19.514 15.687 1.00 54.39 C
ATOM 8 CD1 ILE A 4 46.397 17.045 14.836 1.00 46.72 C
ATOM 9 N THR A 5 46.077 19.024 19.828 1.00 40.65 N
...
MASTER 321 0 0 2 28 0 0 9 3077 2 0 30
END

Fig. 5. Protein Data Bank (PDB) record for 1HIX and its 3D-visualization

plicated sequences are identified using multiple sequence alignment (MSA) and
statistical scoring with user-specified threshold criteria. Figure 4 shows an ex-
cerpt of a MSA with CLUSTAL W [12]. A list of candidate sequences for which
protein mutation annotations from the papers may be written to a structure
visualization tool input format is generated. Before annotations are written to
an input format the sequences are further evaluated for a number of features. Do-
main complexity is evaluated using CDD (Conserved Domain Database) search
tools [8] and non-target domains are trimmed. Mutated residues are located
on the retrieved sequences and only sequences bearing the declared wild type
residues at the specified coordinates with the correct offset between multiple
mutations are eligible for subsequent sequence-structure alignment.

Structure Selection. The choice of a protein structure for mapping and visualiza-
tion of mutations can be generated dynamically or is user-defined. A dynamically
selected structure is the top hit obtained when the consensus sequence of all eligi-
ble sequences is pairwise aligned using BLAST against the database of sequences
of structures contained in the Protein Data Bank. The structure of the selected
sequence (top hit) is used as the template to render the mutations and associ-
ated annotations from a variety of sequence mutations described in publications.
The mapped coordinates of the mutated residues on the structure sequence are
identified by pairwise BLAST alignment. More details on the sequence analysis
algorithm can be found in [2].

3D-Structure Database Access. We now retrieve the corresponding structure from
the Protein Data Bank (PDB). This database is the single worldwide repository
for the processing and distribution of 3D biological macromolecular structure
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Fig. 6. ProSAT showing a 3D (Webmol) visualization of the endo-1,4-β-protein
with mutations extracted through text mining, selected with the interface on the
left (sections of the extracted information is displayed on the buttons)

data. The name of the structure, e.g. 1HIX, identified in the selection step is the
key term entered in the PDB query engine and facilitates the direct download
of the structure file. Figure 5 shows an example of a pdb4 file containing atom
coordinates and the corresponding amino acids used by a variety of structure
visualization tools for rendering images of protein structures in 3D. Amino acid
residue identity and coordinates, columns 4 and 6, facilitate mapping of mutation
annotations extracted through text mining.

Application Integration. After sequence analysis has legitimized the transfer
of annotations from a particular text to a residue on the structural homolog,
ranking and formatting of sentences is necessary. Formatted annotations are
produced depending on the input format for a particular visualization tool.

Currently, only the ProSAT template [6] with additional provision for non-
database annotations is employed, while other tools could be enhanced for this
purpose as well. The annotations, along with the Genbank protein Identifier
(GI) and PubMed ID (PMID) for the originating publication, are uploaded to
the ProSAT server and rendered alongside the structural homolog through a
Webmol interface. Coloured mutated residues are highlighted in structure and
described in a corresponding annotation panel, as shown in Figure 6.

3.3 Case Study and Results

Improvement of enzyme features is particularly relevant when the enzyme of
interest catalyses an industrially relevant reaction. In our case study we have
4 Further information on the standard PDB data format can be found at http://www.
rcsb.org/pdb/.

http://www.rcsb.org/pdb/
http://www.rcsb.org/pdb/


10

Table 1. NLP subsystem partial evaluation results

Abstract only Full paper
Protein/Organism Mutations Protein/Organism Mutations

Precision 0.88 1.00 0.91 0.84
Recall 0.71 0.85 0.46 0.97
F-Measure 0.79 0.92 0.61 0.90

chosen to mine texts describing mutations to xylanase enzymes. Such enzymes
depolymerise the plant cell wall component xylan that is partly responsible for
dark colour of unbleached paper. Chlorine based oxidizing chemicals are typically
used to bleach paper and result in considerable effluent problems for the pulp and
paper industry. Xylanases are now used to remove xylan, which results in less
chlorine being required for bleaching. Xylanases have been specifically improved
to perform well under industrial conditions (high temperature, alkaline) required
by the pulp bleaching process.

For our first system evaluation we selected twenty papers on xylanase mu-
tations. Table 1 shows the results of a preliminary (manual) evaluation of the
NLP subsystem. We evaluated (a) whether the system found the correct protein-
organism pairs (i.e., it must have identified the protein, the organism, and cor-
rectly assigned the protein to its host organism) and (b) how many mutations it
found. We are currently preparing more extensive, automated evaluations of the
NLP subsystem, the sequence analysis component, and the overall system. How-
ever, with respect to the NLP part, the most problematic entities are currently
author-invented abbreviations.

3.4 Summary

The case study has addressed a complex biological data integration problem
and highlighted the feasibility of integrating literature-derived annotations with
in-silico biology. The extent to which the text mining systems combined with se-
quence analysis tools and existing biological data can provide additional insight
to structural biology and protein engineering will be determined from the future
employment of the prototype software by expert protein engineers knowledgeable
of specific protein families. We consider the use of text mining to drive protein
structure visualization as an innovative approach that provides the protein en-
gineer with enhanced access to the knowledge reported by other investigators
without the need for time consuming manual literature searches.

4 Future Work

From an application perspective, the inclusion of further information describing
enzyme characteristics of wild type proteins for contrasting with the improve-
ments to particular features of these enzymes described in the literature is of
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Fig. 7. A simulated screenshot of connecting text mining results of a mutated
protein with its corresponding wild-type information from the Brenda database

additional value to the protein engineer. Such descriptions in the literature of-
ten refer to fold increases without necessarily providing units of measurement.
Bringing wild type data together with mutation induced improvements is clearly
valuable and information of this kind is of great value in decision making for fu-
ture investigations. For example, before embarking on major mutational studies
to improve an enzyme for a particular property it is important to know if there is
a precedent of such an achievement within any protein family. Text mining of mu-
tation literature accompanied with wild type information provided by database
searching complements this need and can be achieved by the architecture we
describe. Figure 7 shows an example by simulating a connection between our
system and the Brenda database [11], which we plan to automate in the future.

5 Conclusions

In this paper we present an architecture enabling new biological applications by
linking biological databases with text mining results from research papers.
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The protein mutation example shows that text mining results of scientific
literature can provide enough information to access and link numerous biological
databases to build or enhance in-silico bioinformatics applications.

An important insight of our work is that the often imprecise and incom-
plete results from natural language processing techniques can be automatically
filtered through bioinformatics algorithms and supplemented with information
from existing databases.

Acknowledgements. Vladislav Ryzhikov implemented and evaluated signifi-
cant parts of the NLP subsystem. The authors would like to thank Razif R.
Gabdoulline and Rebecca Wade for their help and collaboration in adapting
their ProSAT system to accept textual annotations.
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